26,096 research outputs found

    In-flight thrust determination on a real-time basis

    Get PDF
    A real time computer program was implemented on a F-15 jet fighter to monitor in-flight engine performance of a Digital Electronic Engine Controlled (DEES) F-100 engine. The application of two gas generator methods to calculate in-flight thrust real time is described. A comparison was made between the actual results and those predicted by an engine model simulation. The percent difference between the two methods was compared to the predicted uncertainty based on instrumentation and model uncertainty and agreed closely with the results found during altitude facility testing. Data was obtained from acceleration runs of various altitudes at maximum power settings with and without afterburner. Real time in-flight thrust measurement was a major advancement to flight test productivity and was accomplished with no loss in accuracy over previous post flight methods

    Normal loads program for aerodynamic lifting surface theory

    Get PDF
    A description of and users manual are presented for a U.S.A. FORTRAN 4 computer program which evaluates spanwise and chordwise loading distributions, lift coefficient, pitching moment coefficient, and other stability derivatives for thin wings in linearized, steady, subsonic flow. The program is based on a kernel function method lifting surface theory and is applicable to a large class of planforms including asymmetrical ones and ones with mixed straight and curved edges

    Plotting program for aerodynamic lifting surface theory

    Get PDF
    A description of and users manual for a USA FORTRAN IV computer program which plots the planform and control points of a wing are presented. The program also plots some of the configuration data such as the aspect ratio. The planform data is stored on a disc file which is created by a geometry program. This program, the geometry program, and several other programs are used together in the analysis of lifting, thin wings in steady, subsonic flow according to a kernel function lifting surface theory

    Boundary condition program for aerodynamic lifting surface theory

    Get PDF
    Users manual for a U.S.A. FORTRAN 4 computer program which determines boundary conditions for a thin wing lifting surface program is described. This program, the geometry program, and several other programs are used together in the analysis of lifting, thin wings in steady, subsonic flow according to a kernel function lifting surface theory. The program calculates specific types of boundary conditions automatically such as those necessary to determine pitch and roll damping derivatives. The program also accepts descriptions of the camber or downwash and twist in the form of tables and/or coefficients of equations. The program performs interpolations so that tables and/or coefficients can apply at stations selected by the user and not at stations dictated by the control point locations

    Classical T Tauri-like Outflow Activity in the Brown Dwarf Mass Regime

    Get PDF
    Over the last number of years spectroscopic studies have strongly supported the assertion that protostellar accretion and outflow activity persists to the lowest masses. In this paper we present the results of our latest investigation of brown dwarf (BD) outflow activity and report on the discovery of two new outflows. Here ISO-Oph 32 is shown to drive a blue-shifted outflow with a radial velocity of 10-20 km/s and spectro-astrometric analysis constrains the position angle of this outflow to 240 +/- 7 degrees. The BD candidate ISO-Cha1 217 is found to have a bipolar outflow bright in several key forbidden lines (radial velocity = -20 km/s, +40 km/s) and with a PA of 190-210 degrees. A striking feature of the ISO-Cha1 217 outflow is the strong asymmetry between the red and blue-shifted lobes. This asymmetry is revealed in the relative brightness of the two lobes (red-shifted lobe is brighter), the factor of two difference in radial velocity (the red-shifted lobe is faster) and the difference in the electron density (again higher in the red lobe). Such asymmetries are common in jets from low mass protostars and the observation of a marked asymmetry at such a low mass supports the idea that BD outflow activity is scaled down from low mass protostellar activity. In addition to presenting these new results, a comprehensive comparison is made between BD outflow activity and jets launched by CTTSs. In particular, the application of current methods for investigating the excitation conditions and mass loss rates in CTT jets to BD spectra is explored.Comment: Accepted by Astrophysical Journa

    Flag manifolds and the Landweber-Novikov algebra

    Full text link
    We investigate geometrical interpretations of various structure maps associated with the Landweber-Novikov algebra S^* and its integral dual S_*. In particular, we study the coproduct and antipode in S_*, together with the left and right actions of S^* on S_* which underly the construction of the quantum (or Drinfeld) double D(S^*). We set our realizations in the context of double complex cobordism, utilizing certain manifolds of bounded flags which generalize complex projective space and may be canonically expressed as toric varieties. We discuss their cell structure by analogy with the classical Schubert decomposition, and detail the implications for Poincare duality with respect to double cobordism theory; these lead directly to our main results for the Landweber-Novikov algebra.Comment: 23 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTVol2/paper5.abs.htm

    X-Ray Eclipse Timing in the LMXB EXO0748-676

    Full text link
    Orbital period changes are an important diagnostic for understanding low mass X-ray binary (LMXB) accretion-induced angular momentum exchange and overall system evolution. We present our most recent results for the eclipse timing of the LMXB EXO0748-676. Since its discovery in 1985 it has apparently undergone three distinct orbital period "epochs", each characterized by a different orbital period than the previous epoch. We outline the orbital period behavior for EXO0748-676 over the past 18 years and discuss the implications of this behavior in light of current theoretical ideas for LMXB evolution.Comment: 4 Pages, 3 Figures, Submitted to the X-Ray Timing 2003: Rossi and Beyond conference, November 200
    • …
    corecore